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CONVEX: A CONPUITER PROGRAM FOR SOLVING COMEX PROGRAMS

by

H. 0. Hartley, R. R. Hocking, L. R. LaMotte, H. H. Oxspring

Introduction

The purpose of this technical report is to describe a computer program imple-

menting the convex programming algorithm developed by Hartley and Hocking 1963'.

Mhe program has been used successfu.uly on a number of problems connected with

Project Themis as well as numerous other problems which have arisen at Texas A&M.

The program .s also being used by a number of other institutions as shown on the

attached List of Users.

The report is in two parts. Part I is a description of the algorithm as

extracted from the initial paper and Part II gives a documentation of the program.

N-.,
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PART I: Description of the Algorithm

INTRODUCTION

The general mathematical programming problem can be described as

maximize g(x)

subject to f.(x) < 0 1 ... m

The convex programming problem is an important special case which is amienable

to mathematical and numerical treatment and requires that g(x) is concave

and the fi(x) are convex, real-valued functions of the n-vector X for all

real X. The non-negative condition on the variables may be included but

it introduces no loss of generality. It is also assumed that the functiona ere

"differentiable. Certain special problems exist in which these properties hold

only in a subset of the n-apace but they can frequently be handled by slight

modifications of the algorithm to be discussed in the following.

Formulation of the Convex Problem as a Linear Problem

The problem given above is equivalent to that of maximizing the co-ordinate

X..Xn+1 subject to the original restrictions and the additional restriction

Xn - g(x) 0 0. Note that the concavity of g(x) implies that this new

restriction is convex and could just be adjoined to the original set as

f +(X) f 0. It does have particular significance however and so it will be

carried in its original form.

This new problem has a convex feasible region in (n+l) - space bounded

on the sides by cylindrical sets formed from the boundaries fi(x)=O and x=O

and bounded from above by the surface x g(x). This feasible region is

now approximated by a new one which is defined by hyperplanes in (n+l) - space,



that is, the convex feasible repion defined by the restricti3ns

fpX) W 0 i 1 i m + I is replaced by one vhicil is defined by che

intersection of a large set of linear half-spaces. These hyperplanes are

*• constructed as follows:

(i) Lmpose an arbitrarily fine grid on n-space.

(ii) Construct a tangent plane to each surface xn÷ 1  f Wx)

i * 1 .. , m + I at each grid point.

(iii) For i I ... m consider the intersection of this plane

with x n = 0 and uze the re2ulting linear restriction. For

i = m + 1 use the tangent plane itself as a linear boundary to the

feasible space.

rThe general equation of a tangent plane to the surface

I x : f(x) at a grid point x* is .given by•. ~n l

g ~n :

x (x (xj ) f(x)

Trus for each of the restrictions f (x)_< 0 i 1 ... m we have

s set of linear restrictions of the form

• x j (x( - x ) + fi(x') < 0
J.I X*

Similarly for the restriction x+ " g(x) < 0 we get the

set of linear restrictions

X - R x (x -x) -g(x) 0
Jnl X

J=1 j J X



At this point the additional assumption is made that the original

feasible reyion be bounded. Thus there is sor'- value D such that the

cube Ixj[ _ D , 3 D 1 ... n contains the feasible region. Thus if we only

allow grid points in this cube the linear problem formulated above has a

finite number of restrictions end the simplex method could, at least

theoretically be applied. (in practice it has not been found necessary to

specify D.)

The concavilty of g(x) on a bounded space allows us to postulate a

value M such that the optimum value of g(x) < M.

The linear problem formulated above can now be summarized as follows:

max d'x

S.t

A x _c

x.' 0 i 1...

x unrestrained

Here x (xI x 2 ... xn,xn )and d' =(0 0 ... 1) are n +

vectors and A and c can be written in partitioned form as follows:

S--A 1  0 [C 1

A2  0 C2

A A 0 C

S+ 1 m m+l

L 0 lJM _



For i = 1 ... a. A is a matrix whose rows are formed by evaluating the

vectr I... i )at all. grid points. Thus Ai is N x n
x•r a Xn i

where N is the number of grid points. Corresponding to Ai we have

the N - vector C1i whose elements are given by

x -f (x*)

J-i •Jj x-

evaluated at the grid points x*.

Similarly, Am + 1 is defined by the rows

(, ...
-x .n

and c + 1 is its correnponding vector with elements

S~n

g(x*) - j x .-- ~~ J~ j x3

The (n + 1) st column of A contains Leros in all rows except those

corresponding to Am + 1 and the last row which contains ones. Note that

this last row corresponds to the restriction Xn + i -

The Dual Problem and Its Simplex Tableau

The dual to the linear problem described above is given by

minimize c'W

s.t.

A'v > d

V > 0

Here for convenience the restrictions have all been written as A'v > d but

in fact since x is unrestrained the last restriction is an equality.-~ n+i
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This restriction has coefficients which are the last column of A and has

a one on the right hand side.

This dual problem is beat summarized in tableau form as shown below. This

tableau gives the rules for constructing any desired column. Thus to generate a

column of the type indicated by columns I through m+Il the following steps

are necessary:

IL I Rows 1 through n are obtained by evaluating the indicated partial

derivatives at the desired grid point.

(b) Row 0 is obtained by evaluatinZ Ci as defined above at the desired

"grid point and changing its sign.

(c) Row n+l is 0 for i=1 ... m and 1 for i=m+l.

0 1 ... i m m+l A S0  1 .. S

0 0 -C -C -M l 0 0

a f*
1 0 ax/a 0 0 -1

10
r0

nn

-- - - -•I - -

[ • 1 0 0

n 0i /n -1

mntl 1 o 0

TABLEAU FOR CONVEX PROGRAMMING
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The thm

m !12 Either the original or the dual linear problems foasulazed above can

theoretically be solved by the simplex method but it is clear that for even

moderately large Problems and reasonable grid spacing the number of restrictionb

in the primal (or number of variables in tVe dual) would be so large as to

exceed the capacity of mast computers.

In this section a computational procedure is developed which solves the

Z.- problem by a simplex-like algorithm which requires the formation of' only a small

number of the tangent planes described above.

Since the algorithm is an iterative process, it is only necessary to describe

how to get started, how to proceed from one step to the next and when to stop.

This will now be done using the standard terminology and notation from the

simplex method.

At any iteration, say the th a baais matrix call it B consisting ofk

a + 2 columns from the tableau is required, or more precisely iV% inverse Bk

is required. To get started we have the initial basis matrix B0 given in

partitioned form by

0 ... -M

B i 0 0
S0 0

The inverse of B0 is easily obtained by changing the sign on M.

Assume now that stage k of the iteration has been reached and B k is

available. Denote the elements of Bk l by bij, iJ - 0, ... n ' 1. Recall that

the first row of B -I is the current pricing vector and that b o 1 hence the
k

current pricing vector is (1, bOl, ... b n Now assuming for the moment

that all columns in the tableau have been rormed, the simplex method re--ires the
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computation of the inner product of the pricing vector vitb a column of the

tableau to see if this column is eligible to come into the basis. Looking first

at columns of the type 1 = 1 ... m this computation yields the net price

, n a fl

- j:1 2 xb i

for a typical tangent plane at x*. If this net price is ' 0 this vector is

eligible to come into the basis. Since it is inconceivable to have all such

vectors available for inspection the following question is raised:

Are hereanyeligble ansth
Are there any eligible tag�ent planes representing the i restriction

and if so can the one with maximum net price be identified and constructed?

Looking at the above net price as a fumcW-.ion of the unknown grid point and

recalling the definitions of Ci we see that the net price for any targent plane

to fi(x/ is given by

NP(x) (bj - x) + f (x*)

netj= pric is l j

Thus the net price is Just the tangent plane formed from grid point x* evaluated

at x = bOj. Now among all grid points, this :rdinate is maximum for x = bOj.

and the magnitude of the net price is f.(b0 ). Thus amcng all the vectors which

can be formed from fi(x), the one with maximum net price is formed by allowing

the grid point to have coordinates x = b and further, this maximum net price

is given by evaluating fi at this grid point. Thus if fi(b0 j) is negative there

thare currently no columns in the i set which can co)me in and another set must

be inspected.

Similarly, if the pricing vector is applied to the (m 1 1) at set of

restrictions the net price is

n4
" C +Ei " bOJ +b 0n+j 1mJ =, 1 a x i x *
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which upon rearrangement zon be written as

- b E ((o4 - x*) + g(x*)

"which is Just b - (the ordinate at xj b to the tangent pla formed
fto gtid panint plan fome

-from grid point )- •Again this net price is maxim for xW b~j and the
maximum net price is given by b g(b).

- hus in summary, the pricing operation consists simply of evaluating the
functions fiW, i ... g(x) at x= b j, jl ... n+l. If any

of these is positive then the corresponding vector can be brought in. In
practice the one corresponding to the largest net price might be selected. The
vector is then formed, up-dated and brought into the basis according to the
usual simplex procedure to get BlI and the process is repeated. The steps
are repeated until all net prices are < 0, or more reasonably, until no net

price is > e where e is some small positive number.

According to the dual theorem of linear programming the pricing vector for
the terminal B matrix gives the optimum solution. That is, x b and

0 n0J
g(x) = b0 n+l

Observations

The sequence of pricing vectors generated as described above is, in fact, a
sequence of trial solutions which converge on the true solution from outside the
feasible region. Each trial solution is at the intersection of the n+l

tangent planes which are currently in the basis.

The choice of value of M requires some knowledge of the problem although
the previous paragraph shows that if M is too small this will be indicated by

the fact that b 0 n+l = M at termination. There is theoretically nothing

wrong with choosing M too large.

4
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Some problem* have been encountered in which sae of the hypotheses nove

not been satisfied in certain regimo. For example, /x is concave for
3-

> 0 but not real-valued for x1 < 0. Thus if the pricing vector at some

stage has b 0 then the pricing operation can not be performed. However, in

i-d this case, the restriction X, > 0. that is vector S in the tableau would be

eligible to come in and if brought in, will remove the difficulty.

in general, if &l. assimptions are not satiafied it may be possible to

apply the algorithm tut care should be taken.

2•A
N:A



PART I: Documentation of wh- Pro-.r

I. Description of the Problem

As indicated in Part I the problem to be sol-,-ed is:

maximize g(x)

subject to fi(x) <0, i = 1, m

where g(x) is concave and the fi(x) are convex, real valued functions of the

n-vector x for all real x, and the functions are differentiable. Note that

description as a minimization problem is also afforded, since minimizing -g(x) is

equivalent to maximizing g(x).

For simplicity of programming we assume that the constrairts f are segmented

into four categories in the following order:

lower bound constraints denoted by xi > Li, i = 1, ... , NLB

upper bound constraints denoted by xi <u-- i = 1i .1 , NUB

other linear constraints denoted by Dx < b, D is (NLIN) x (NVAR)

other convex constraints denoted by hi <0, 1 = 1, ... , NCON

Letting the functional be denoted by hNCON + l' the problem can be described

as

maximize hN(ON + (x)

subject to

-xi+ Li<°, l, ... , NLB ()

x- U <0, 1= 1,..., NUE (2)

Dx -b <0, where D is (N LIN x N VAR) (3)
and b is (NLIN x 1)
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h1 (x) <0, i = 1, i,

0 II. Description of the Program

CONVEX is a subprogram written in FORTRAN IV (Gý which executee the

coputational procedure ccnsisting of simplax-like iterations

with special pr-icing operations. The user is required to write a main program

and function subprogram which, together, specify the particular problem CONVEM

is to solve, and call CONVEX.

The main program will have available to CONVEX Pa array consisting of the

lower and upper boutds and the left side of (3). This information on upper-and

lower bounds will be provided through the single dimensioned arrays ILB, BLB,-

tUB, BUB, where

fl.B gives thi subscripts of the variables having lower boundsxth
BLB gives the lower bound for the ILBth variable

-ItJB gives the subscripts of the variables having upper bounds

BUIB gives the upper bound foz the •Bt variable.

For example, consider a Bevenvarieble problem having upper and lower bounds

as follows:

L3< x3  U3  -x 3 + L'3 < 0
x < U or, i1. proper input form, + L_ <0

5 5 -x6 +N< A
L6 <x6 x3 U<0
-3-

x5 -U 5 < 0

This information may be provided by having
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ILB(l) - 3

ILB (2) = 6

_LB(1) L3

BLB(2) = L

IUB(2) = 3

BUB(1) -U3

BUJB(2) -U5

The other linear constraints are entered as

A(I, J) = (D : -bh,

where A 1-) < 0 represents constraints as in (3). Values of the following

variables should also be supplied:

?4VAR: number of variables.

NET: total number of constraints plus one.

NLB: number of lower bound constraints.

NUB: number of upper bound constraints.

NLIN: number of other linear constraints.

NCON: number of non-linear constraints.

BIGM: upper bound on objective function.

DELTAM: amount by which BIGM is increased if the original estimate of'

BIGN is toc, small.

NALTER: If NALTEh = 0, alternate net pricing is employed. Otherwise,

alternate net pricing is employed except that priorit-, restriction.

are checked each iteration. If NALTER a 1, "prlerlty" meer.s

lower bounds. If HALTER = 2, "priority" means lower and uSer
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bounds. If NALTER - 3, "priority" means lower and upper bounds
and other linear constrtints. If NALTER = 4, "priority" means

eli constraints.

EPS1: represents the stopping criterion associated -ith the net pricing

operation, i.e., the program may stop if the maximum net price
is less than EPS 1.

EPS2: represents the 3topping criterion associated with the am of the
Sabsolute vwlue of changes in the values of the unknowns fromSNVAR 

kiteration t to iteraticnt+k, i.e., E i X•%£ X "xi M 2EI .
SREPS2: represents k in the description of the stopping criterion

associated with EPW2, and must be less than or equal to 15.
EPSPIV: represents pivot check stopping criterion, i.e., the program

may stop if maximum element in entering vector is less than

IBAS: instructs program concerning which basis to expect,
and Mmst be 0, 1, 2, or 3. For IRAS 0, the initial basis inverse
is BiMl, supplied by the user. For IBAS = 1, the lower bound
constraints are eutomatically used. For IRAS = 2, the upper
bound constraints are automatically used. For IBAS = 3, the
co-ordinates of an initial feasible point are supplied in X.

BINVt used only if IBAS = 0, in which case BIT"W contains the inverse
of the initial basis and has dimension (NVAR + 1) x (NVAR + 1).

X: used only if IAS - 0 or IBAS= in which case X contains the
current solution vector but has dimension NVAR.

DELTAX: used only if IBAS W 3, in which case it is the amount by which
any artificial bound is incremented if it appears in a terminal

solution.

MIIIAS: used only if IBAS = 0, in which case the user must supply in IIJBS(I -1
the Index of the constraicit represented in the I- column of BINV.
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INVERT: instructs program as to how many iterations to perform before

re-inverting.

- ..ITF : tells program haw many iterations ere to be performed before

_intermediate results are printed.

_ :JE : If JBIN = O, Bl is included in the information printed out.

Otherwise, it is excluded.

In addition, the main program must include the following three statements:

- .DIMEION BIIhV(60, 60), X(60), V4BAS(60)

CO"i-0N`/BLKc l/A(60, 60), BLB(6o), B-B(6o), mI'601, IUB(60)
CO4ON/BLK 2/NVAR, NB, NUB, WIN, NEON, NET *

A function subprogram of the form SETUP(I, J, x, C) is required to provide

hi, i 1, ... , NCON + 1, and a i 1, ... , NCON + 1; j = 1, NVAR. For

-spcified 1, SETUP will provide h (x) IX when J 0, and yX- hi(x)IX*
j 1, ... , NVAR when J = 1.

II1. An Example

Consider the following problem:

Maximize 2X, X1  + X2

subject to -.7X1 + 4 <3

2 ~.
2X + 34 < 6

0 <X 2  1.3

*For the double-precision version, these arrays should be dimensioned 30, or30 x 30, except for A, which should be 50 x .0.
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In the format of Section I, the problem roy be described as

maxim~ize X-

subject to -Xi + 0 < 0

-X2 + 0 f 0

X2  1-13 0

.7X+ - 1+0

The input information described In Section 3 is ae follows:
S• -A = ( .7, 1, -1)

h•c) = 2X3 * 4x

b 2 - 2X-

1 1
IbXj

minii
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The main program may appear as follows,

Dfl2SI0K BLW~(60, 6o), x(6o), ixwA(60)

MW.N/BLaX ltA(60,60), BIU(60), irag6o}), nz~60), -L.u3(vO)

C0HW~N/BLK 2/NVAR, NWD, NUB, MTIN, WO0N, NET

NVA.R - 2

NET - 6

M~B 2

NUB -21

MN= 1

NEON = 1

BIM - 4~.

DELTAM = 1.

NALTER -0

EPSi .001

EPS2 .001

EPSPIV =.0001

IIMVRT =50



IMPS2 10

• IEAS I

ITPFPT -1

• IBIN - 0

ILB(1) -1

1143(2) 2

BLB(1) 0.

BLB(2) 0.

IUB(r ) = 2

BtT(l) -1.3

A(l, 1) -. 7

A(l, 2) =1.

A(i, 3) -.

CALL CONVEX (BAS, BINV, X, INMS, NALTER, EPSI, EPS2, NEPS2, EPSPIV,

$INVERT, !TPRVT, JBIll, BI(4, DELTAM, DELTAX)

STOP

END

SETUP may appear as follows:

FUNCTION SETUP (I, J, X, COL)

DIMENSION x(6o), cOL(6o)

SETUP = 0.

IF (J. EQ. O) cMO TO (100, 200), I

IF (J. EQ. 1) (0 TO (300, 400), I

100 SETUP - 2.*X(1)**2 + 3.*X(2)**2 - 6.

RETURN

200 SETUP - 2.*X(1) - x(1)**2 + X(2)

RETURN



300 CoL(l) 4. * x(i)

COL(2) 6. *x(2)

4oo COL(1) = 2. - 2. *Vl)

CO(2) = .

END

The program car. then be assembled asB,

REFEMMEIC

r2JHartley, HI. 0., and R. R. Hocking, "Convex Prcgrs-ing by Taznger~tial
Approxim.ation," l~eeetScion"', Vol. 9, No. 4, 1963.
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List of Users of CONVEX

M1-. Harry Jones
Department of Civil Engineering
Texas AMM University
College Station, Texas 77-43

Dr. Raymond Farrish
Department of Ag. Economics
University of Connecticut

!ý Storrs. Connectlcut 06263

Professor Dble Colyer
k Department of Ag. Economics
Vý University of Missouri

Columbia, Missouri 65201

Dr. J. D. Pegram
Department of Statistics

Mississippi State University
Starkville, Mississippi

Dr. HoUlis H. OxsprLng
Dept. of Quantitative Basiness Mgt.
University of Houston
Houston, Texas 77004

Dr. Larry Claypool
Dept. of Mathematics and Statistics
-Oklahome State University
Stillwater, Oklehoms

Mr. Jack E. Doyle
Department of Mathematics
Memphis State University
Memphis, Tenncssee 3,liI

i•Ir. W;ýIer Johnston
College of Ag. and Biological Sciences
Clemson University
Clemson, South Caroline 29631

Dr. Gary Carey
Department of Industrial Engineering
Texas A&M University
College Station, Texas 77-,3

Mr. Mike McKay
Institute of Statis" ics
Texas A&M University
College Station, Texas 77d,43

14ir. Roger C. Pfaffenberger
InstituLe of Statistics
Texas A&M University
Collee Station, Texas 77Ah3
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Mr. Richard Callen
Institute of Statistics
Texas A&M University
College Station, Texas 77o43

Mr. Ernest Davis
Department of Ag. Economics
Texas A&M University
College Station, Texas 77843
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